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RESOLVENT ESTIMATES 
FOR ELLIPTIC FINITE ELEMENT OPERATORS 

IN ONE DIMENSION 

M. CROUZEIX, S. LARSSON, AND V. THOMItE 

ABSTRACT. We prove the analyticity (uniform in h ) of the semigroups gen- 
erated on Lp(O, 1), 1 < p < oo, by finite element analogues Ah of a one- 
dimensional second-order elliptic operator A under Dirichlet boundary con- 
ditions. This is accomplished by showing the appropriate estimates for the 
resolvents by means of energy arguments. The results are applied to prove sta- 
bility and optimal-order error bounds for numerical solutions of the associated 
parabolic problem for both smooth and nonsmooth data. 

1. INTRODUCTION 

Let A be an elliptic differential operator in one dimension defined by 

Au = -(au')'+ bu'+ cu, x E Q _= (O, 1), with u(O) = u(l) = 0, 

where u' = du/dx and the coefficients a, b, c are smooth and real-valued 
with a positive on Q2. Defining the corresponding sesquilinear form 

I 

A(u, v) = (au', v') + (bu', v) + (cu, v), where (u, v) = u dx, 

we assume that there is ao > 0 such that 

(1.1) ReA(v, v) > aollv'll2, v e Ho'(Q) 

where IIU-12 = (u, u) . If this is not satisfied originally, it may be accomplished 
by adding a positive multiple of u to Au. 

Let 0 = xO < x < <x1 . < XN < XN+1 = 1 define a partition of the interval Q 
into subintervals Qi = (xi, xi+,) of lengths hi = xi+I -xi and with h = max hi. 
We shall think of this partition as a member of a family of such partitions, 
which is assumed to be quasi-uniform in the sense that for some c > 0 we have 
hi > ch, i = 0, 1, ... ,N. For a fixed integer r > 2, we define 

Sh = {v E H (Q):v IQ1 E lr-I, i = 0, 1, ... ,N 
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where Hlr, denotes the space of all polynomials (with complex coefficients) 
of degree < r - 1. We then define a discrete analogue Ah: Sh -) Sh of the 
operator A by the relation 

(AhVI, x) = A(VI, x), V/, X E Sh. 

Let R(., -A) = (AI + A)-', where A is a complex parameter, denote the 
resolvent of -A. More precisely, we define R(Q, -A)f for f E H-' (L), the 
dual space of Ho (Q), as the solution u = u(, A) E Ho (Q) of the variational 
equation 

(1.2) A(u, x) + (u, X) = (f, 7), VX E Ho(Q), 

where (,) denotes the duality pairing between H- (Q) and Ho (Q). Simi- 
larly, we note that R(A, -Ah)Phf is the solution Uh = Uh(., A) E Sh of 

(1.3) A(uh, X) +)L(Uh, x) = (f, 7)' V e Sh, 

if we define the projection P: H-' (Q) -, Sh by 

(1.4) (Phf, X) = (f, 7), VX E Sh. 

Note that the restriction of Ph to L2(0) is the standard orthogonal projection. 
The main purpose of this work is to prove the following estimates of the 

resolvents of -A and -Ah. WVe use the notation 11 IIP for the standard norms 
in Lp(Q), 1 <p <oc. 

Theorem 1.1. There are fo E ( r , 7r) and C > 1 such that the linear operators 
R(A, -A) and R(A, -Ah)Ph are boundedfrom H- 1 (Q) into Ho (Q), uniformly 
with respect to A in the sector X, ={ E C: argAI < }, and, for 1 < p < o, 
we have 

IIR(A, -A)fIlp + lR(A , -Ah)Phfllp < c + f li , f e Lp (LI), i e 

This theorem is proved in ?2. The proof is based on estimates of the Green's 
functions of (1.2) and (1.3), which we obtain by an energy argument. Since 
the relevant Green's functions do not belong to Ho (Q) in the multidimen- 
sional case, it is not clear whether this technique can be generalized; one- 
dimensionality is also used in various technical details below. 

In the final ?3 we discuss some applications of these resolvent estimates. The 
first application concerns stability and error estimates for spatially semidiscrete 
finite element approximations of the parabolic initial-boundary value problem 

ut + Au= f (x, t), x E Q, t > O, 
(1.5) u(O, t) = u(1 , t) = 0, t > 0, 

u(x, O) = uo(x), x E Q, 

where u = u(x, t), Ut = &u/&t, and where f and uo are given. The semidis- 
crete finite element approximation uh(t) E Sh is defined by the equation 

(1.6) uh, t + AUh = Phf(, t), t > 0; uh(O) = Uoh, 

where uOh E Sh is an approximation of uo. 
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We now think of A as an unbounded operator on Lp(Q) with domain 
9(A) - W2(Q) = {u E W2(Q): u(O) = u(l) = O}. Elementary arguments 
show that 

(1.7) llullm,p < CmjlAullm-2,p, u E Wpm () n W. 2(Q), m > 2, 

where Ilullm,p = (Em O IIu(')llP)1'P denotes the standard norm in Wpm (Q) (with 
the usual modification for p = oc ), and hence that A is a closed operator on 
Lp (Q). Together with the resolvent estimates in Theorem 1.1, this shows that 
A and Ah generate analytic semigroups E(t) = e-tA and Eh(t)Ph = e-tAhPh 
in Lp(Ql); see, for example, [12, Theorem 2.5.2]. In the usual way we obtain 
the representation 

(1.8) E(t) = e-tA LetAR((i, -A)d),. 

where the contour F is the boundary of X;, oriented so that ImA increases 
along F, and similarly 

(1.9) Eh(t) = e tA - j l etAR(A, -Ah )d,. 

Using (1.8), (1.9) and the resolvent estimates, we obtain the bounds 

(1. 10) IIE(t)vIIP + tIIAE(t)v IIP < CIIVIIP, t > 0, 

and 

(I. I 1) IlEh(t)Phv lIP + t||AhEh(t)PhV IIP < C||VIlP, t > O, 

by a standard argument. In a similar way we see that E(t) and Eh(t)Ph are 
bounded from H- (Q2) into Ho (Q) for t > 0; in the latter case the bound is 
independent of h. From semigroup theory it also follows that u(t) = E(t)uo 
and Uh(t) = Eh(t)uoh are solutions of the homogeneous problems (1.5) and 
(1.6) with f(x, t) 0 O. Solutions of the nonhomogeneous problems can then 
be obtained by Duhamel's principle: for (1.5) we have 

t 
(1.12) u(t) = E(t)uo + jE(t - s)f(., s) ds, t> 0 

under suitable regularity assumptions on f . An analogous formula holds for 
(1.6). 

In this connection we note that when p = oo we have 9(A) = Co(Q) = 
{u E C(Q) : u(O) = u(1) = 0}, so that A is not densely defined in Lo(Q) 
and hence the standard theory of analytic semigroups does not apply when 
p = 00. However, most of the semigroup theory can be developed without the 
assumption that 9(A) is dense; see [13] and [6]. Note also that A is densely 
defined in Co (Q) with the maximum norm; in that space the classical semigroup 
theory is thus applicable. But the existence theorems for (1.12) then require 
that f(t) E Co(Q), which is not satisfactory, since it places an unnecessary 
boundary condition on f(t). We therefore prefer to work in Loo(Q) rather 
than in Co(Q) . 

Stability estimates of the form (1.11), with p = oo, but with logarithmic 
factors in the right-hand sides, were obtained in [15] and [14]. Apart from 
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removing the logarithm, our present proof of stability is simpler than those of 
[15, 14]. 

Using the stability estimate for Eh (t) in (1.1 1) we prove in Theorem 3.2 that 
for UOh suitably chosen we have the error estimate 

(1.13) IIUh(t) - U(t)I < Chr(IIUOllr,p + jj Ut(S)Ijr,p ds)X < p < 0. 

Smooth solutions are thus approximated to optimal order. 
In some applications it is important to allow nonsmooth initial data, such as 

discontinuous functions or even 3-functions. Let X(Q) denote the set of finite 
measures ,u with I Iu I I., = Ju 1 (Q2) = fQ d l I l. With each u E X (5Q) we associate 
a distribution (also denoted u ) in the usual way: (,u , X) = fQ X(x) d,u(x) for 

X E C(Q). Recall that Ph: X (Q) Sh is defined in (1.4). For solutions of 
the homogeneous equations, i.e., (1.5) and (1.6) with f(x, t) 0, and with 
UOh = PhUo, we show in Theorem 3.5 that, for t > 0, 

(1.14) IUh(t) - u(t)IP < Chr r/2IIUOIIP, uO e Lp(Q), 1 <p < oo, 

IUh(t) - U(t)lloo < Chr(r+l)/2Iuol, Uo E X(Q) 

In addition to (1.10) and (1.1 1) the proof uses a stability property of E(t) and 

Eh(t) considered as operators from X(Q2) to L, (Q), namely 

IIE(t)vIjoK + IIEh(t)Phv11Ko < Ct 1/2I1VII.', t > 0, 

resulting from the corresponding resolvent estimates, which are also derived in 
?2. 

We remark that our proofs of these error bounds differ slightly from those of 
[14], which introduce additional logarithmic factors. 

Another application of the resolvent estimates in Theorem 1.1 concerns the 
stability and error analysis of fully discrete schemes based on rational approxi- 
mations of the analytic semigroup Eh(t) . Let r(A) be a rational approximation 
of the exponential function exp(L), which is accurate of order q > 1, i.e., 

(1.15) r(A) = eA + O(Aq+1), A O, 
0 

and A-acceptable, i.e., 

(1.16) Ir(A)l 1, Re) < 0. 

Then E2h^uoh = r(-kAh)nuOh is an approximation of Eh(tn)Uoh, where k is 
the timestep and tn = nk for n = 1, 2 . Using the resolvent estimate and 
contour integral representations, one may then prove stability for the discrete 
evolution operator Enh, 

(1.17) IIEknhuohIIp < CIIuohIIp n > 0, 1 <p < oo, 

see [3, 10, 11]. Stability may be combined with a local truncation error analysis 
in a similar way as in (1.13) to yield an error bound for certain completely 
discrete schemes. We demonstrate this in Theorem 3.3 for the backward Euler 
method: 

(18 Un E Sh, UO = UOh, 
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and the Crank-Nicolson method: 
Un E Sh, UO = UOh, 

(11)Un + Ah(Un + Un-1)/2 = Phf(tn-1/2), n > 1. 
For general time discretization schemes it is necessary to introduce more com- 
plicated approximations of the source term f; see [2]. We refrain from ad- 
dressing this difficulty here and restrict further discussion to the homogeneous 
problem ( f _ 0 ). In this case we have Un = E2huoh, Uh(t) = Eh(t)uoh, and the 
resolvent estimates and contour integral representations yield the error bounds 

(1.20) hUn-Uh(tn)IIP ? Ck'IIAuh IP, 
tn=nk>0, 1<poco 1,<1j q, 

and, if r is strongly A-acceptable, that is, if in addition Ir(oo) I < 1, then 

(1.21) | tn= nk>O, 1 <p <o 

see for example [8]. Using the above bounds for Uh(t) - u(t) and some addi- 
tional arguments, one may then obtain bounds for the total error Un - u(tn). 
For example, when UOh = Ph uo, the error bounds (1.14) and (1.21) immediately 
give 

un - u(tn)lI < C (hrt7nr/2 +knt,pq)IIuoII, tn = nk > 0, 1 <p < 00, 

because Ph is stable in Lp (Q) by a result of [4]. We may also obtain error 
bounds which hold uniformly as t -* 0, although an argument based directly 
on (1.20) is not satisfactory, since this applies a discrete norm to the discrete 
initial value. We show in Theorem 3.6 by a somewhat more involved argument 
that 

(1.22) hIU-u(tn)IIP < C(hrllUo01r,p + kqIIUo112q,p), 
tn = nk > 0, 1 <p < ox 

if f 0, uo is sufficiently smooth and satisfies the appropriate compatibility 
conditions at x = 0, 1, and UOh is suitably chosen. 

2. RESOLVENT ESTIMATES 

The main object of this section is to prove the bounds in Theorem 1.1 for the 
resolvents R(A, -A) and R(A, -Ah) . The resolvent operators will be studied 
for A in a sector 

XK,6 = {) E C: I arg( -K)? < 06} with K > ?, 0 E (2 r) . 

For A E SK, 9 it is convenient to write 

(2.1) Ai-K = (4+ i)2 =42 - q2 +2isq 5 with + i E Y-,0/2, 5 ,E R. 

For future reference we note that for A E XK, 0, we have 

(2.2) 'ii ? 31 where 3 = tan('6) > 1, 

and 

(2.3) 42 < J - KI = 2 + q < (1 + 32)W 

The following estimate will be a basic tool. 
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Lemma 2.1. For any 0 E (2Ir, 7r) there are K > 0 and C > 1 such that 

(2.4) llv'112 +121vI2 ? C A(v, v) +IIvII2 , v E Ho(Q), L E XK,0 

where 4 is related to A as in (2.1). If A is selfadjoint, i.e., b(x) 0 O, then we 
may choose K = 0. 

Proof. Setting 

(2.5) F = A(v, v) + IIVII12, 

we obtain, by taking the real part of (2.5) and using the transformation of 
variables in (2.1), 

ReA(v, v) + (K + 42 - q2)IIV112 = ReF, 

and together with (1.1), 

(2.6) aollI112 + (K + -2 _2) IIv12 <?Fl. 

By taking the imaginary part of (2.5) we obtain 

ImA(v, v) + 24qjIv 112 = ImnF, 

and, since ImA(v, v) = Im(bv', v), 

241jq I1vI12 < FI + IIbIIoDllv'll llv II. 

Multiplying by 2 = I tan('0) we have, in view of (2.2), 

2ll11VI2 < g Iql IIVI12 < 16IFI + '5IIbIIk IIv'II llvi. 

Adding this to (2.6), we obtain 

aoIlv/112 + (K + 42)lIV 112 < (1 + 23)IFI + aolIv'112 + 2libIo liv I12, 

and (2.4) follows by taking K - b2IIbII1/(8ao). [ 

If f E L2(Q), then taking X = u in (1.2) and applying the lemma shows 

IIU,112 + 421IUI12 < CI(f 5 U)I < Cllf 11 IIUII 5 S , 

In particular, using (2.3), we have 

|l(R -A)f 11 < :2 1jfjj < JA- KI lifil 1 K,0 

which shows that -A is a sectorial operator on L2(Q). The same argument 
applies to equation (1.3), so that -Ah is also sectorial, uniformly in h, with 
respect to the topology of L2(Q) - 

We next prove that -A is sectorial on Lp(Q) for 1 < p < oc. This result is 
well known, but we give an elementary proof based on the energy estimate of 
Lemma 2.1, which we shall then modify in Theorem 2.3 to show that -Ah is 
sectorial in the topology of Lp(Q) uniformly in h. 
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Theorem 2.2. For any 0 E (I r, 7r) there are K > 0 and C > 1 such that 

IIR(A,-A)fIlp?< A Clilip fe LPA( ), )EXK , 1 <P < 0. 

Proof. Let 0 E (7r, 7r) be arbitrary and let K be as in Lemma 2.1. Lemma 
2.1 implies that the sesquilinear form B,(u , v) = A (u, v) + A(u , v) is coercive 
on Ho(Q), that is, IBh(u, u)I > C-IIIu'112 for all u E Ho(Q) and i E 2Ko. 

Hence, by the Lax-Milgram lemma we conclude that (1.2) has a unique solution 
and that 

||R(A, 5A)fIlHo < ClIflIH-1, f E H 1(Q), i E SK, 0- 

We shall prove the resolvent estimate for p = oc. Since L1 (Q)* = Lo (Q) and 
R(A, -A)* = R(R, -A*), where the adjoint operator A* is of the same form 
as A, the estimate then follows for p = 1 by duality and for 1 < p < o0 by 
interpolation. 

To complete the proof, it thus remains to show 

(2.7) llu(., A)Ik?oo C I If Iloo, i E XK,0 , 

where u(., A) E Ho(Q) is the solution of equation (1.2) with f E Lo,,(Q). Let 
g = g (. Y, )i) E Ho (Q) be the Green's function of the adjoint operator A* +)LI 
with singularity at the point y E Q, i.e., 

(2.8) A(X, g) + )(x, g) = X(Y), VX E Ho (Q)- 
Since by (1.2) and (2.8) we have u(y, A) = (f, g(, y, A)) = (f, g(, y, A)), 

the estimate (2.7) follows if we show 

(2.9) II g&, y'Ili?, c C Y Q, )iEXSK,0- 
IA KI'I 

Our strategy for proving (2.9) is to introduce the function 

(2.10) v(x) = v(x, y, A) = g(x, y, A)eYlx-yl, 

where 4 is related to A as in (2.1) and y is a positive number to be chosen 
below. We shall prove 

(2.11) IIv(, y )I? < C '-1 Y Q iEX , 

which implies 

lg(x , y,5 A)l < C4-`e-y4lx-yl, x,y(E Q, i E K,05 

and (2.9) follows in view of (2.3). The Ansatz (2.10) is motivated by the ob- 
servation that, in the special case when Au = -u", we have 

0 < g(x, y, p2) < i-le-4Ix-yl > 0 

by the maximum principle, the bound being a fundamental solution. We also 
remark that g(x, y, )A) may be calculated explicitly in this case to give a direct 
proof of (2.9); see [5, ?8.1]. 

To complete the proof, it thus remains to prove (2.11). From (2.10) we have 
g(x) = v(x)e-ylx-yl, so that 

(2.12) g'(x) = v'(x)e-yXIx-YI - y4v(x)e-yIx-yIs(x - y) 
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where s(x) = ?1 according to the sign of x. Choosing X(x) = v(x)eY4IxYI 

for the test function in (2.8), we obtain by straightforward calculations that 

(2.13) A(v, v) + A)Ifv12 = v(y) + 2iyX Im(as(. - y)v', v) 

+ y242(av, v) - y&(bs(. - y)v, v). 

In order to apply Lemma 2.1, we need to bound the right-hand side. First 
we use the inequality 

(2.14) liv lo llv 'll vii, v E Ho(Q)?, 

to get 

lv(y)l < ? iiV I1VijII < Iy-l'-l + l1V'll2 + Iy2211Vi112. 
Next we have 

2y41 Im(as(. - y)v', v)l ? 2yilalloliv'll lv II11 < 1lvll2 + Cy24211V 12. 

Similarly, 
y242(av, v) < y2, 2lIalKollvll2 = Cy282llVIl2 

and, using Poincare's inequality liv ii < llv'll, 

yXI(bs(& -y)v, v)l < yXjIblljlov'lI llvii <? llV,Il2 + Cy24211VlI2. 

Thus the right-hand side of (2.13) can be bounded by 

(2.15) Ylf-lI + I IJv'll2 + Cy2<2IVll112 

and Lemma 2.1 yields 
I 

11V112 + (1 - Cy2)g2jIV112 < I y-f~1, i E K 

By taking y sufficiently small, we arrive at 

(2.16) lIv II < C^-312, llv'll < C,-112 A E Y 

which in view of (2.14) implies the desired bound (2.11). 0 

Remark. Since llg(', y, A)IllI = llv(-, y, A)e-Y41'-Yli < C4-211v(2 , y, I yA)ll we 

note that (2.9) actually follows directly from (2.16) without passing through 
(2.11). 

We now turn to the corresponding result for the discrete problem (1.3). 

Theorem 2.3. For any 0 E ( r, 7r) there are K > 0 and C > 1 such that 

iR(A , -Ah)Phflip < ? - K lififliP f e Lp(Q), A EXK,0 1?p < X 

Proof. Let H E (i7rt, 7) be arbitrary and let K be as in Lemma 2.1. Referring 
to the discussion at the beginning of the proof of Theorem 2.2, we note that it 
suffices to show the resolvent estimate for p = oo. 

Step 1. We first dispose of the case when A is large compared to h-2 by 
noting that 

(2.17) iiAhxiK ? Clh211%1100, X E 5h. 

In fact, by inverse inequalities and the stability of Ph in LI(Q) (see [4]), we 
have 

(AhX, 4) = (AhX, Ph,) = A(X, Ph/) < CllX'IlllJ(Phb)'l11I 
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for X E Sh, q E LI(Q), which shows (2.17). Thus, if 

(2.18) JAI > C2h2, where C2 = max(2C1, K), 

then II-'AhXII < Ix 11X, so that by the stability of Ph in Lo0(Q) (see [4]) 

00 

II(AI + Ah)'PhfIIoc = ' Z E(-;i'Ah)jPhf|| 
(2.19) J=0 

? 1jIIPhfIloo ? 
IlfIll0 

Since (2.18) implies (note that h < 1 ) 

(2.20) K < C2 < C2h2, 

so that IA - KI < 21ALI, we may conclude that the desired estimate holds for 
JII > C2h-2. 

Step 2. In this step of the proof we shall bound the solution of (1.3) at the 
nodal points and show 

(2.21) max IUh(Xi, A)I < Ic lf f00 A -E XK,0 I JAI < C2h2 

For future reference we note that, by (2.3) and (2.20), the assumption JI < 
C2h 2 implies that 42 < 2- K| < JI| + K < 2C2h -2, that is, ch < C. 

Following the proof of Theorem 2.2, we let xj be an arbitrary nodal point 
and introduce the discrete Green's function gh = gh(, xj, A) E Sh defined by 

A(xh, gh)+)A(Xh, gh)= Xh(xj), VXh E Sh- 

With v(x) = v(x, xj, A) = gh(x, xj, A)eY4i-xji, we shall show for some y E 
(0, 1) that 

(2.22) llV(v, xj, )II)| < CX , j = 1,... , N, A e XK,0 I JAI < C2h2 

which leads to (2.21) in the same way as in the proof of Theorem 2.2. 
With X(x) = v(x)eYix-xA, the argument leading to (2.13) now yields 

A(v, V) +AIIv112 =A(X -Xh, gh) +A(X- Xh, gh) 

(2.23) + Xh(Xi) + 2iyX Im(as(. - xj)v', v) 
+ y242(av, v) - y4(bs(. - xj)v, v), 

where Xh E Sh is arbitrary. For Xh we choose an "elliptic projection" of X 
defined by 

(%h E Of) = (% , Of) , Vo E Sh. 

It is well known that Xh(XI) = X(xj), so that Xh(Xi) = v(xj). The last four 
terms are thus the same as in (2.13) and can be bounded as in (2.15). For the 
two remaining terms we have, by a well-known error estimate and an inverse 
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inequality, with IIUI f = f IU2 dx, 

IA(?-%h, gh) +c x - xh, 9g + 
N 

< C E(11% h III lig I0Q + Pil11% h IIX I - h 1, gh I1QI) 

? c : (i~ix lX()lil, Ilghl~ I~l(rl~ lhk~ i=O 

N 
? C E hirI IIX1(r) tIli, ||gh IQi, + JAJffIX 1(r) IIQ' Ilgh lII) 

i=O 
N 

? CEh r 211,(r)l g 

i=O 

where we have also used the assumption that JAI < C2h-2. Recalling that 

x(x) = gh(x)e2Y iX-VI, where g4r)(x) on Qi, and that ch < C and 
y E (O, 1), we have 

r-1 

h r-2 11,(r) 
IIQ < Cecyh r-2 E (Y4) r1 e2y x,-xje 

1=0 

< Chi2 ((Y4)rllghIli, + E(Y4)r1h1IIllghIlk,) e2Y4Ix1xI 

< C ? yXlgh IIQ + lghIIQ yXe2y,lx,-x, 

Hence, 

hi 2Ix(r) II0, lIghIkl, < C(Ilgh'II0 + Y49IghIk1,) e 
and since, cf. (2.12), 

IlIghlI, + y2IIghjju, < C?llV'||Q + y4jjvjju, e-Y1IxI- 

we may finally conclude that 

IA(%X- h, gh) + A(%- %h gh) I < 8g 11V l+c2lvl- 

Thus, the right-hand side of (2.23) may be bounded as in (2.15) and the bound 
(2.21) follows for y sufficiently small by application of Lemma 2.1 as in the 
proof of Theorem 2.2. 

Step 3. Having established the estimate (2.21) for Uh at the nodal points, 
we now want to show the same bound in the interiors of the subintervals. (Of 
course this is trivial if r = 2.) Assume that the maximum of I Uh I is attained 
in the subinterval Q2. We introduce the subspace 

Sh(QI) = {x ESh :suppx Cl}, 

and define Vh E Sh (Ql) by 

(2.24) A(vh-uh, x) + K(vh-uh, x) = O VX E Sh(QI). 

We shall first show for Uh = Uh - Vh E Sh that with llull,O,O = supQ1 Jul, 
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which in view of (2.21) implies 

(2.26) lluhlla' < lAZC Ilfilf , 0 A E ,, ,AI < C2h-2 (2.6) IIUIIo4~ 
~IA-KI 

We shall then show 

(2.27) lVhlloo < l 
l ilfil A aEK,O, 5AI < C2h,-2 (2.2) IIhIIo ? -KI 

which completes the proof, since Uh = Uh + Vh- 

To show (2.25) we note that, with Uh equal to the linear interpolant of Uh 
on Q, and Uh = Uh elsewhere, equation (2.24) implies 

A(ih -Uh, ) + K(Uh-Uh, x) = A(ih, X) + K(Uh , %) ) VX E Sh(QI). 

Since Wh = Uh-Uh E Sh(QI), this implies 

A(wh, Wh) + KIlWh 112 = A(fih, Wh) + K(Uh, Wh), 

and an application of Lemma 2.1 (with A= K and with IIUII1=Q fIuI2dx) 
shows 

11wh I2 < CIA(Uih, Wh) + K (Uh, Wh)I ? C|h I + ClI|hI| + 2||Wh hI. 
Since 

IWh la <h1/2llwII , h- 1/2I&hII, + h1/2 1fI IQ1 < Cmax(Iuh(xl)I, Iuh(xl+)+), 
we may conclude that 

|lWhIloo < Cmax(Iuh(xl)I, lUh(Xl+l)l) 

and (2.25) follows, since Uh = Uh-Wh and I1UhiIloo, <max(luh(xl)l, lUh(Xl+1)1). 
It remains to estimate IlVhlloo. From (2.24) and (1.3) we have 

A(vh, x) + ;A(Vh, x) = (f, x) - (A-K) (Uh, x), VX E Sh(QA). 

Taking X = Vh, we obtain 

A(vh, Vh) + AIIVh 112 = (f, Vh) - (A- K)(Uh, Vh). 
An application of Lemma 2.1 yields, in view of (2.3) and (2.26), 

IIV 112 + 42Ih 112 CI(f, Vh)<- (A - K)(Uh , Vh)I 

(2.28) < C(IJfIJoo + I -KJIIfIUhIIoo,11 ) lVhh1| 
< Ch1/2 IIfII IlVh ll- 

Hence, 
IliVhl1 < Ch 12,4-211llf 1. 

Since lIVhlloo < Ch-112Ilvhll by an inverse inequality, we conclude that (2.27) 
holds. O 

We may now prove our main result. 

Proof of Theorem 1.1. We only consider R(A , -A). The proof for R(A, -Ah) 
is identical. Fix 0 E (pr, i7). By Theorem 2.2 there are K > 0 and C > 1 
such that 

(2.29) IR(A, -A)f Ilp < - lKfIlip A EK,- 
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The assumption (1.1) and Lemma 2.1 imply that B, (u, v) = A(u, v)+A(u, v) 
is coercive uniformly for A E 1-a0/2, n/2 U XK,, , so that, by Lax-Milgram's 
lemma, equation (1.2) has a unique solution and 

IIR(, -A)f IIHi ? CllfIIH-1, f E H(I ()) A E X-ao/2,7r/2 U XK,e0 

Hence, IIR(A, -A)fllp < CllfIlp, and using also (2.29), we get 

IIR( , -A)fIIP ' 1 + 11 lIfIlip 'A E I-ao/2,7r/2 U 4K,o0 

We then choose (0 E (27t, 0] such that o,9 C X-aO/2, /2 U K, 0* Together, 
these estimates show the required bounds for Re(, -A) for A E Xf = X o, 1 . o 

We shall also need an estimate of the norms of the resolvents considered 
as operators from X(Q) to Loo(Q), where X(Q) denotes the set of finite 
measures ,I with I ,uI ,, = IM,I(Q) = fQ d I,u I. With each ,I E X (Q) we associate 
a distribution (also denoted u ) in the usual way: (,u, X) = fQ X(x) dyu(x) for 
x E C(Q). Recall that Ph :6 (Q) -* Sh is defined in (1.4). 
Theorem 2.4. There are 0 E (p7r, 7r) and C > 1 such that 

IIR(2 A -A)fII1o+ IIR(A X-Ah)Phf Il " C Ilf f, f E A(Q), iE V 

Proof. Let 0 E (E i, 7r) be arbitrary, and let K be as in Lemma 2.1. Taking 
X = u in (1.2) and applying the lemma shows 

IIU,112 + 42IIul12 < Cl(f, jj)l < CllfIItf liulloc, A E K, 0 

which in view of (2.14) and the arguments in the proof of Theorem 1.1 implies 
the desired result for R(A, -A). The same argument applies to R(A, -Ah) . 0 

3. ERROR ESTIMATES 

In view of the assumption (1.1) and the Lax-Milgram lemma we may define 
a bounded linear operator Rh: Ho' (Q) -- Sh by the equation 

(3.1) A(Rhv-v, X) = VX ESh. 

For this "Ritz projection" we have the following error estimates. 

Lemma 3.1. There isa constant C such thatfor k = 1,.. r, 1 < p < oo, we 
have 

IIRhv- IIP + hII|h(Rhv < Chk II ||kp, V E Ho (Q) n Wpk (Q). 

Proof. The case p = o0 can be found in [14] or [7]. We prove the case p = 1 
by a slight modification of the argument of [7]. The remaining case 1 < p < 00 
then follows by interpolation. 

We shall show below that 

(3.2) II(Rhv - V)YIII < Chk- iIVIlk, , k = 1, ..., r. 

The desired bound for IlRhv - vIII then follows by the standard duality argu- 
ment. In fact, let b e Loc (Q) be arbitrary and define Vt E Ho (Q) by 
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Then 

(RhV -V, )=A (RhV -V, V) = A (RhV - V q f-Rh I) 

? CII(RhV- v)'IIlII(Rh V/ - i1 
? Ch k-IIIV Ilk, IChIIVII2,o, 

which implies IIRhv - VIII < Chk liv Ilk, 1, since clearly 11 iY112,oo < Cq10 . 
In order to show (3.2), we introduce the projection Rh: Ho' (Q) -* Sh defined 

by 
((RhV-v), x) =0, VX E Sh. 

It follows that (AhV)' = PhV', where Ph denotes the L2 projection onto Vh = 

{X E L2(Q) Xl, E flr-2}1, see [7, ?4]. Hence, 

(3.3) ii(Rhv - v)'iiI < Chk IIivIIlk, , k = 1, ... r, 

since Ph is stable in L1 (Q) (this is trivial because Ph is a local projection). 
It remains to estimate 0 = Rhv - RhV . We introduce the piecewise constant 

function a defined by a(x) = a(xk+1/2) for x E Qk, where Xk+1/2 denotes the 
midpoint of Qk, and we note that 

(a(v-AhV)',x')nk =0, VXESh. 

Since 0 E Sh, we thus have 

aoll0'i2 < A(6, 0) = A(Rhv - RhV, 0) = A(v - RhV, 6) 
= (a(v- RhV)', 0') + (b(v- RhV) , 0) + (C(V - RhV), 0) 

= ((a - a)(v- RhV)', 0') + (b(v- RhV)I, 0) + (C(V - RhV), 0)- 

Hence, 

2I6'II2 ? Ch||(v-RhV) 11116 |loo + CII(v - RhV) i11011oo < CII(V -RhV) 11111 112. 

Therefore, 
'16 11 ? 110'112 < Cii(v - Rhv)YiiI, 

which together with (3.3) implies (3.2). El 

We now turn to the proof of an error estimate in the case of smooth solutions 
of the nonhomogeneous problem. 

Theorem 3.2. Let 1 < p < oo, let u be a sufficiently smooth solution of (1.5) 
with uo E Ho' (Q) n Wpr(Q), and let Uh be the corresponding solution of (1.6). 
Then 

ilUh(t) - u(t)ip < CiuOh - uollp + Chr(iiUOllr,p + lUtllr,p ds) 

Proof. Following a standard practice, we divide the error into two parts: 

(3.4) e(t) Uh(t)-u(t) = (Uh(t) -RhU(t)) + (RhU(t) - u(t)) 0(t) + p(t). 

In view of Lemma 3.1, we have 

(3.5) IID p(t)IIp < ChkIID u(t) ll I, 1 = 0, 1, k = 1 , .. . ,r 
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where Dt = 0/0t. Since this estimates 11p(t)j1p in the appropriate way, it only 
remains to estimate 0(t), which belongs to Sh. In view of (1.6), the identity 
AhRh = PhA and (1.5), we find that Ot + AhO = -PhPt, and hence 

ft 

(3.6) 0(t) = Eh(t)(O) -j Eh(t - s)PhPs(s) ds. 

The desired error bound now follows immediately by application of (3.5) and 
the stability estimate for Eh(t) in ( 1.1 1). El 

The proof of Theorem 3.2 is based on the stability in Lp (Q) of the dis- 
crete evolution operator Eh(t) together with the "truncation error estimate" of 
Lemma 3.1. Since Lp (Q) stability is also available for completely discrete evo- 
lution operators Eknh = r(-kAh)n based on A-acceptable rational functions, see 
(1.17), it is possible to obtain analogous error estimates for certain completely 
discrete schemes. We carry this out for the backward Euler and Crank-Nicolson 
methods in the following theorem. 

Theorem 3.3. Let 1 < p < oo, let u be a sufficiently smooth solution of (1.5) 
with uo E Ho (Q) n Wpr(Q), and let Un be the corresponding approximation 
obtained by the backward Euler method (1. 18). Then 

ll Un-u(tn)1lip < C11 U0h-U01lip+C cr (llUO llr, P+ t;l Ut llr,p ds) +Ck 11 l utt Ilip ds. 

For the Crank-Nicolson method (I1.19) we have 

llUn - u(tn)llp < CIluoh - uollp + Chr(IIuoIlr,p +j Ilutllr,p ds) 

+ Ck2 ; (ilutttllp + juttji2,p) ds. 

Proof. Using a splitting of the error analogous to (3.4), we have for the back- 
ward Euler method instead of (3.6) 

n 

fin = E1^6Jo- kZ, E~1k Ph Q9tPi + (0tu(t) -Ut(ti)) 
j=l 

where Ekh = (I + kAh) -1, from which the proof proceeds using the stability 
property (1.17) with r(A) = 1/(1 - A) and standard estimates. The argument 
for the Crank-Nicolson argument is analogous. 51 

General time-discretization schemes require more complicated approxima- 
tions of the source term f; see [2]. Avoiding this difficulty, we shall content 
ourselves in the rest of this section with studying the homogeneous equation 
(f 0_ ). We will then need smoothing properties, which are slightly more 
general than (1.10). In particular, we need to deal with solutions which already 
possess some initial smoothness and compatibility. In order to express this we 
define for nonnegative integers m and for all p E [1, oo] 

Wp'(Q) = {v E WpJ(Q): Aiv = 0 at x = 0, 1 for all integers j E [0, m/2) }. 
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Lemma 3.4. Let m and k be nonnegative integers. Then 

(3.7) IIE(t)vllm,p + tllE'(t)vilm,p < Cmt-mlllV P, t> O, v E Lp(Q), 
(3.8) iiE(t)viJJo + iiEh(t)PhviJJo < Ct /iiJviiA, t > 0, V E X(Q). 
(3-9) ||A~~kE(t)vllm,p < Ck mt kIIVIIm,p 5 t > O,vE5 p() 

Proof. The regularity estimate (3.7) follows from the analyticity of E(t), see 
(1.10), together with (1.7) and the interpolation inequality 

iiu'iY ? C iiuiPiiu"iPi, 1 <p < 0x, u E W 2), 

which can be proved by elementary arguments. In fact, let m = 21 + i with 
1> 0 and i = 0 or 1. Then 

iiE(t)v JJn ,p < CmiiA'E(t)v Jii,p < Cm V'iiA'E(t)V iio,p iiA'E(t)v ii2i,p 

< Cm JiA'E(t)v ioJ,pJJA'+iE(t)v iio,p < Cmt-m/2iV l P, 
and similarly for E'(t)v. The bounds in (3.8) follow from the resolvent esti- 
mates of Theorem 2.4 and the contour integral representation of the semigroups 
in the same way as (1.10), (1.11). 

We now turn to the proof of (3.9) and first note that it suffices to consider 
the cases k = 0 and 1, since the case k > 2 follows from these and the identity 
AkE(t)v = (AE(t/k))kV. We also note that the case m = 0 follows from 
(1.10). Assume now that (3.9) has been proved also for m = 1. Then for 
m > 2 we may write m = 21 + i with I > 0, i = 0 or 1, and obtain for 
k=0, 1 

lIAkE(t)v lVm ,p < CiiAk+lE(t)v ii,p = CiiAkE(t)Alv lli,p 
< Ct I||AvJJii,p < CmtkVm,p V E WPM). 

It remains to consider m = 1. For k = 1 we have 

iiAE(t)v i l ,p < C iiA2E(t)v lIP iiAE(t)v lJP 
<Cti-31211VIIp VEWp2i(j2) i=O, 1, 

from which the desired result follows by interpolation. In fact, for each v E 
WplJ(Q) and e > 0 there is VE E Wp2 (Q) such that lIv - vjIlp < CEIIvI I,p 
and IlvJl 2,p < CE-1IivIII,p . For e < 1 this is achieved in a standard way by 
extension of v to an odd 2-periodic function and by convolution with an even 
mollifier on the scale e. If e > 1, then we take vE = 0. Hence with e = t-/2 
we obtain 

IIAE(t)v 11 l,p < IIAE(t)(v - v, ) 11 ,p + IIAE(t)vE, 11 l,p 
< Ct-31211V - VE IIP + Ct-112i1VE 112,p < Ct- IIVIIi ,p, V E Wpl(Q). 

The final case m = 1, k = 0 follows from the Cauchy integral representation 
(1.8) once we have shown the resolvent estimate 

(3.10) IIR(A5 -A)f II1p < C 
llfil 1P ufEp 
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To prove this, we set u = R(A, -A)f and v = aBu', where B(x) = 
exp(- fx b'dt). Then it is easy to show that v E Wp2(Q) and v' = 
B(Au + cu - f), so that 

-(av')'+cv+Av=g, xeQ; v'(0)=v'(1)=O, 

where g = (aBf)' - (aB)')u - (caB)'u satisfies lgIll ? Cllf lll ,p . An argument 
similar to the proof of Theorem 1.1 now gives lIv llP< gllp, which implies 
(3.10). The proof of Lemma 3.4 is now complete. 51 

Remark. The interpolation argument that we used in the proof of the special 
case m = 1, k = 1 of (3.9) may also be expressed by saying that WJpl,(Q) is 
continuously imbedded in the space (Lp (Q), Ji2(Q))1/2, o defined by the real 
interpolation method. The estimate (3.9) follows more directly from (1.10) 
when 1 < p < oo, because Wp1(Q) = (Lp(Q), JW2(Q))1/2,oo in this case. This 
is not true when p = 1, oo (cf. [9]), which is the reason for our indirect proof 
of the special case m = 1, k = 0 of (3.9). 

We now consider the homogeneous equation with nonsmooth initial data. 

Theorem 3.5. Assume that f(x, t)- 0. Let u be the solution of (1.5) and Uh 

the solution of (1.6) with uOh = Phuo. Then 

lluh(t) - u(t)IIP < Chrt r!2IIuollp, t > 0, uo E Lp(Q), 1 < p < o0, 

IIUh(t) - u(t)lloo < Chrt-(r+l)!2lluollA,, t > 0, uo E A(Q). 
Proof. Since u(t) = E(t)uo and uh(t) = Eh(t)Phuo , we must estimate the norm 
of the error operator Fh(t) = Eh(t)Ph - E(t) . We first consider (3.6) again and 
divide the interval of integration into (0, t/2) and (t/2, t). Integrating by 
parts in the first integral, noting that Phe(O) = 0, we get 

rt/2 rt 

O(t) = -Eh(tl2)Php(t/2) - j Eh(t - s)PhP(s) ds - Eh(t - s)Phps(s) ds. 
0 t/~~~~~~~~2 

Using the stability estimates in (1.11) and the error estimates (3.5), we obtain 

t/2 rt 

110(t)llp < CIIp(t/2)IIp + C (t _ s)- IIP(s)IIP ds + C j IIpS(s)IIP ds 
J t/2 

k 
~~~t/2 f 

< Ch' (Ilu(tl2)lIk,p + tI I(U(S)Ilk,p ds + IIus(S)IIk,p ds) 
/2 

for k = 1, ..., r. In particular, it follows that 

(3.11) IlFh(t)uoIIP < Chr sup |IIE(s)uoIIr,p + sIIE'(s)uOllr,p). 
0<s<t 

Further, by (3.7) with m = 1 , we obtain a preliminary estimate of low order: 

(3.12) II h(t)uo lp < Cht- 1/2 SUp (S1/2 IIE(s)uoII ,p + S312 IIE'(s)uoIIj ,p) 

< Cht- 1/211UOIIp. 

Writing 

(3.13) Fh(t)uo = Fh(t/2)E(t/2)uo + E(t/2)Fh(t/2)uo + Fh(t/2)2uo, 
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we have, by (3.11), (3.7) with m = r, 

IlFh(t/2)E(t/2)uolIp < Chr SUp (IIE(s)uOIIr,p + sIIE'(s)uoIIr,p) 
(3.14) t/2<s<t 

< Ch rt-r12II1U0II11 

and in view of (3.8), using t/4 as an intermediate level, 

(3.15) IIFh(t12)E(t12)uoIIoo < Ch rt-(r+1)12 IIU 11'f 

We further note that E(t/2)Fh (t/2) is the adjoint of the operator 
Fh(t/2)*E(t/2)*, where E(t)* = e-tA* and similarly for Fh(t)*. Since the 
operator Fh(t/2)*E(t/2)* is bounded in Lp(Q) for 1 < p < oo as in (3.14), 
its adjoint is similarly bounded in Lp, (Q), p' being the conjugate exponent to 
p. Hence, 

IIE(t/2)Fh(t/2)uolIp < Chrur/2tIluolIP. 

For the third term in (3.13) we have by (3.12) 

|IFh (t/2 )2UO IIP < Cht- 1/2 |IFh (t12)uo IIP, 

and we may conclude that altogether 

IlFh(t)uollp < Chrt7r/2IIUOIIP + Cht 1/2 IIFh(t/2)uoIIp, 

or, after r iterations, 

llFh(t)uollp < Chr r/2t(2lUollp + llFh(t/2r)U0Ip)1. 

Since, by stability lIFh(t/2r)UOIIP < Clluollp? we infer that 

llFh (t)uollP < Chrtur/2 I Uo ll, 

which proves the first inequality of the theorem. 
Finally, we consider the case when uo E O(Q) . For the second term on the 

right in (3.13) we then have by (3.8) 

IIE(t12)Fh (t12)uo lloo < Ct- 1/2 IIE(t14)Fh (t12)uoll,.ff 

Here, E(t/4)Fh(t/2) is the adjoint of the operator Fh(t/2)*E(t/4)*. Since the 
operator Fh(t/2)*E(t/4)*: Loo(Q) -* C(Q) is bounded as in (3.14), its adjoint 
is similarly bounded in X(Q). In fact, 

(E(t/4)Fh(t/2)uo, q0) = (uo, Fh*(t/2)E*(t/4)q) < Iluoll.llFh*(tl2)E*(tl4)0110 

for all uo E A(Q), q0 E C(Q) . Hence, 

IIE(t12)Fh (t12)u0II00 < Ch rt-(r+1)12 IIu 11'ff 

The proof can now be completed in the same way as above, using the inequality 

|E(/r)uO110O < Ct 11211uo||, 

which follows from (3.8). o 

We conclude by proving the error bound (1.22) for a completely discrete ap- 
proximation of the solution of the homogeneous problem, which we announced 
in the Introduction. 
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Theorem 3.6. Let u be the solution of (1.5) with f(x, t) 0_ and let Un = 

r(-kAh)n uOh . Assume that the rational function r is accurate of order q (1.15) 
and A-acceptable (1.16). Then, for 1 < p < oo, we have 

jlUn - U(tn)ljp < C(Iluoh - uoj + hriluollr,p + k IuoII2q,p), tn = nk > 0, 

if uo E Wm(Q) with m = max(r, 2q). 
Proof. By stability (cf. (1.17)) there is no loss of generality in assuming that 
uOh = Phuo. Using (3.1 1) and (3.9), we obtain 

IIEh(tn )Phuo - E(tn)uOIIP < Chr||UOjjr,p, 

and it remains to estimate 

GnPhuo (r(-kAh)n - Eh(tn))Ph uo- 

Following [1], we use the identity 

q-1 
( 3. 1 6) GnPhuo = Z GnAhj(PhA1 - Ai1Ph)Aj+lfok 

1=0 

+ GnlAjAh ia0k + Gn Ph(UO -0k), 

where aOk is to be chosen so that 

(3.17) IIuo - UOkIIP < Ckq ljuO112q,p, 
(3.18) IlAq okllp < CIIuo112q,p, 
(3.19) IIA'iOkIIr,p < Ck-II|Uo11r,p, 0 < j < q 1. 

In [1], aOk is defined by truncating the Fourier series of uo, but this is not 
suitable here and we choose instead 

q 

UOk = f(kA)E(kA)uo, where f(A) (-A)n/n!=e-e +O(Aq+1), A__ O, 
n=O 

so that 1 - f(A)eA = o(Aq+l), as A --* 0. Hence, using the same contour F as 
in (1.8) and the resolvent estimate of Theorem 1.1, we have 

IIuo - UOkllp = IIA-q(I - f(kA)E(kA))AquOjjP 

| -q (1 - f (kA)ek )R(A, -A) d AqUo| 

kq-1 | -q (1 - f (A)eA)R(k-1 A, -A) dA Aq uo 

t00 

Ckq J p-q-I 1 - f (pei9) exp(pe'9)I dp IlAquollp 

? CkqjugO112q,p, 

where we also used the fact that A is a second-order differential operator. This 
is (3.17). Moreover, by the analyticity of E(t), see (1.10), we have 

q 
jAq iiOkllp,= jAqf(kA)E(kA)uo0P ?< E ! jj(kA)nE(kA)Aquojjp 

n=o 

< CIIAquollp < CIIuo1j2q,p, 
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which is (3.18). Using also the smoothing property (3.9), we obtain 

IlAaiOkllr,p = k-jll(kA)'f(kA)E(kA)uOllr,p 

<k_jE Z 1 1(kA)n+jE(kA)uollr,p < Ck1ljU0jjr,p, 
n=O 

which is (3.19). 
Returning now to the identity (3.16), we first note that (1.17), (1.20), and 

(1.1 1) imply 

(3.20) llGnAhjVh lip < Ckjllvhlip, 0 < j < q, Vh E Sh. 

Moreover, since Ah- 1 Ph RhA-1, Lemma 3.1 implies 

II (PhA-1 - Aj1Ph)vlip = IlPh(I -R r) i Il(P^A -h h)lp h l^IR)A-lvllp < Ch jjA-1vjjr,p- 

Hence, using also (3.19), we find 

||GnA j(PhA-1 - A 1Ph)Aj+1 aOk11P < Ck|ll(PhA'1 - Ah1Ph)A j+1iok lIp 
< CkjhrllAIjaokjjr,p < ChrO U11r,p 5 

for 0 < j < q - 1. Similarly, using (3.20) with j = q and (3.18), we have 

JIGnA-q PhAqukl < CkqllAqOk|< Cq|alqp 

Finally, by (3.20) with j = 0 and (3.17), we conclude that 

llGnPh(uo - aOk)IIP < Clluo - UOkllp < Ckq lU0112q,p 

and we have estimated all the terms in (3.16) in the desired way. El 
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